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This study explored hydrostatic pressure as a mechanobiological parameter to 
control in vitro endothelial cell tubulogenesis in 3-D hydrogels as a model microvascular 
tissue engineering approach. For this purpose, the present investigation used an 
endothelial spheroid model, which we believe is an adaptable microvascularization 
strategy for many tissue engineering construct designs. We also aimed to identify the 
operating magnitudes and exposure times for hydrostatic pressure-sensitive sprout 
formation as well as verify the involvement of VEGFR-3 signaling. For this purpose, we 
used a custom-designed pressure system and a 3-D endothelial cell spheroid model of 
sprouting tubulogenesis. We report that an exposure time of 3 days is the minimum 
duration required to increase endothelial sprout formation in response to 20 mmHg. 
Notably, exposure to 5 mmHg for 3 days was inhibitory for endothelial spheroid lengths 
without affecting sprout numbers. Moreover, endothelial spheroids exposed to 40 mmHg 
also inhibited sprouting activity by reducing sprout numbers without affecting sprout 
lengths. Finally, blockade of VEGFR-3 signaling abolished the effects of the 20-mmHg 
stimuli on sprout formation. Based on these results, VEGFR-3 dependent endothelial 
sprouting appears to exhibit a complex pressure dependence that one may exploit to 
control microvessel formation.  

 

KEYWORDS: Mechanotransduction, Angiogenesis, Lymphangiogenesis, Tissue 
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1. Introduction 

According to the U.S. Department of Health & Human Services, more than 

120,000 patients are on waiting lists for transplantation surgery in the end of 2015 (U.S. 

Department of Health & Human Services, 2016). Despite this, only around 31,000 

transplants are performed in 2015 with an average of 22 people dying each day while 

waiting for a transplant (U.S. Department of Health & Human Services, 2016). To 

amplify this problem, the need for transplants continues to increase. Because of this high 

demand for donor organs coupled with their limited availability, there has been much 

efforts dedicated to designing strategies to tissue engineer organs as suitable substitutes to 

improve or replace lost tissues. Even though people have been putting tremendous efforts 

in tissue engineering, this organ crisis still remains unresolved because of some persistent 

issues that prevent the long-term survival of artificial tissues after implantation. A key 

factor that is being addressed to improve the in vivo viability of synthetic tissues is the 

need to promote efficient transport of nutrients and gases to cells within the tissue 

constructs (Loffredo & Lee, 2008). 

The principal transport modality for small molecules within synthetic tissues is 

passive diffusion of metabolic factors, such as oxygen where the driving force is the 

concentration gradient across the interstitial matrices. Sufficient oxygen supply is critical 

for the survival of resident cells. But the oxygen diffusion limit is less than 200 µm. This 

transport restriction severely constrains approaches to generate viable synthetic tissues of 

thicknesses greater than 1 cm (Griffith et al., 2005; Loffredo & Lee, 2008; Lovett, Lee, 

Edwards, & Kaplan, 2009).  
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In the body, the microcirculation (composed of the microvasculature and 

lymphatics) plays an important role in delivering gases and nutrients to, as well as 

removing wastes from, tissues (Loffredo & Lee, 2008; Shiu et al., 2005). In vivo, cells 

can survive no more than 100 - 200 µm from the nearest capillary (Griffith et al., 2005; 

Loffredo & Lee, 2008; Lovett et al., 2009). This suggests that, for tissue engineering, 

generating adequate microcirculation in tissues would be a promising strategy for 

increasing the success of thick synthetic constructs. Specifically, it would be ideal if 

tissue engineering strategies could be developed to promote the formation of microvessel 

networks within artificial tissues that can mimic the in vivo convective transport scheme. 

One of the biggest obstacles to the success of tissue engineering is to construct sufficient 

microvascular network in peripheral tissues (Loffredo & Lee, 2008). 

In recent years, there have been substantial efforts to design strategies to promote 

vascularization in artificial tissues. For example, tissue engineered scaffolds embedded 

with molecules that stimulate formation of blood vessels (angiogenesis) have been 

developed to encourage in growth of microvasculature from surrounding host tissues 

after implantation (Lovett et al., 2009; Shiu et al., 2005). In some cases, the cells 

responsible for angiogenesis have been incorporated into the 3-D matrices of different 

scaffolds to further aid in microvessel network in growth. Other strategies have been 

studied to develop microvessels in tissue constructs before their implantation. Such 

approaches use bioreactors that mainly facilitate nutrients and oxygen delivery to the 

cells in the tissues to ensure construct viability, but also may be used to prevascularize 

constructs by aiding transport of angiogenic factors. Finally, there are 

microelectromechanical systems-related approaches that rely on generating 
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microvasculature using advanced 3-D microfabrication techniques such as microfluidics 

(Lovett et al., 2009). 

There are also a lot of efforts in developing scaffolds and bioreactors to deliver 

tubulogenic molecules and apply mechanical forces to resident cells to stimulate 

microvascular network formation (Freed et al., 2006). For example, it has been reported 

that low level interstitial flow in 3-D gels could act as a biomechanical factor that 

enhances and directs cell migration and cell-cell communication (Helm, Zisch, & Swartz, 

2007). It has also been found that one can increase formation of neovessel and vessel 

branching by culturing rat microvessel fragments in collagen gel in the presence of static 

stretch compared with control group (no stretching) (Krishnan et al., 2008). However, 

well-controlled distributions of mechanical forces, such as shear stress and tensile stress, 

are hard to apply to cells embedded in 3-D porous matrices due to the thickness of 

constructs and complexity of the scaffold/tissue microstructure. On the contrary, pressure 

seems to be a more readily applicable control parameter to stimulate cells in hydrated 

porous matrices in order to modulate microvessel formation. Recently, it has been 

reported that pressure influences endothelial tubulogenic activities, such as cell 

elongation, proliferation, and fibroblast growth factor-2 (FGF-2) release (Acevedo, 

Bowser, Gerritsen, & Bizios, 1993). Moreover, a previous study showed that endothelial 

sprouting is pressure magnitude dependent (Shin, Underwood, & Fannon, 2012). The 

present study continues to explore the utility of pressure as a tubulogenic stimulus.  The 

following sections will provide the background and rationale of the present study. 
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1.1 Blood vessels and lymphatic vessels 

Blood vessels carry blood throughout the body to deliver nutrients, gases, and 

biochemical mediators to downstream tissues. The lymphatic vessels are a second 

transport system that is responsible for the absorption of interstitial fluid from the 

surrounding tissues to aid in the removal of metabolic waste and to filter pathogens out of 

the tissue matrices (Rovenska & Rovensky, 2011; Santambrogio & Santambrogio, 2013). 

The blood circulation consists of arteries, arterioles, capillaries, venules, and 

veins. Arteries carry the blood to downstream tissues. These vessels continuously branch 

into smaller vessels forming networks of arterioles that further branch into capillaries. 

Capillaries are the smallest diameter and thinnest walled vessels of the vasculature that 

allow diffusive transport of nutrients, gases, and biological mediators from the blood to 

enter tissues. They extend into tissues in complex branched networks. Eventually, the 

capillaries turn into venules that coalesce into veins responsible for bringing back the 

blood to heart. 

Structurally, all blood vessels except capillaries have three layers: tunica intima, 

tunica media, and tunica adventitia (Shiu et al., 2005). The tunica intima is the inner layer 

which separates the blood from the wall, and it consists of a layer of endothelial cells, 

which line the inner surface of the vascular wall in contact with the blood (Shiu et al., 

2005). The middle layer is called tunica media and is made of alternating layers of elastin 

fibers and smooth muscle cells. And the outermost layer is tunica adventitia, which is 

entirely made of connective tissue (Shiu et al., 2005). 
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In contrast to the structure of arteries and veins, capillaries have a more simplistic 

structure, which provides minimal barriers to blood-to-tissue transport. These smallest of 

vessels only consist of a layer of endothelial cells on a basal lamina (Carmeliet, 2003).  

Abnormal capillary growth leads to pathological conditions. The excessive 

formation of blood vessels supports the growth of diseased tissues and the newly formed 

vessels are usually leaky. The excessive blood vessel growth causes disorders such as 

during the pathobiology of cancer, obesity (Rupnick et al., 2002), atherosclerosis, and 

diabetic nephropathy (Carmeliet, 2003). On the other hand, insufficient vessel growth 

leads to tissue ischemia and organ failure (Carmeliet, 2003). Adequate capillary network 

generation is essential for healthy tissue growth in terms of supplying nutrients to tissues.  

The major functions of lymphatic network are maintaining blood and tissue 

volume, absorbing and delivering dietary lipids from the intestine to the liver, and 

trafficking immune cells (Santambrogio & Santambrogio, 2013). Moreover, the 

lymphatics are responsible for draining excess interstitial fluid and preventing the 

accumulation of metabolic wastes (Rovenska & Rovensky, 2011).  

There are two segments of lymphatic network: initial lymphatics and collecting 

lymphatics (or contractile lymphatics). The initial lymphatics are located inside the tissue 

parenchyma and consist of a layer of endothelial cells without smooth muscle media, 

while the collecting lymphatics have smooth muscle media (Mendoza & Schmid-

Schonbein, 2003; Trzewik, Mallipattu, Artmann, Delano, & Schmid-Schonbein, 2001). 

Initial lymphatics, typically referred to as lymphatic capillaries, are responsible for 

collecting and transporting interstitial fluid, proteins, colloids, and cells (Schmid-
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Schonbein, 2003). Several initial lymphatics connect together forming a contractile 

lymphatic vessel. Contractile lymphatics undergo peristaltic contractions (Schmid-

Schonbein, 2003). 

Insufficient lymphatics cause lymphedema due to the interstitial accumulation of 

fluid. Besides promoting tissue swelling due to the accumulation of interstitial fluid, 

which contains high amount of protein, insufficient lymphatics also cause inflammatory 

reaction and abnormal adipose tissue deposition (Chakraborty, Gurusamy, Zawieja, & 

Muthuchamy, 2013). On the other hand, advanced tumors have been reported to be 

associated with upregulation of lymphatics formation which is thought to facilitate the 

entry of metastatic cancer cells into the blood stream and where they may spread to other 

tissues and organs (Cao, 2008). 

    

1.2 Endothelial cells 

All the blood vessels have at least one layer of endothelial cells. Endothelial cells 

play many important roles in synthetic and metabolic processes including blood pressure 

regulation, blood coagulation and fibrinolysis, vascular tone, adhesion and transmigration 

of inflammatory cells, and tubulogenesis (Bouis, Hospers, Meijer, Molema, & Mulder, 

2001; Michiels, 2003; Sumpio, Riley, & Dardik, 2002). In these processes, endothelial 

cells respond to the changes in local physiological conditions (Shiu et al., 2005). 
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Figure 1.1. Diagram of blood vessel network. Figure adapted from 2006 
Encyclopedia Britannica, Inc..  
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Figure 1.2. Diagram of artery three-layer structure. 
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Figure 1.3. Diagram of capillary structure. 
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Endothelial cells derive from endothelial progenitor cells. They differentiate into 

different endothelial phenotypes (e.g., large vessel vs. microvascular; arterial vs. venous; 

capillary vs. arteriolar vs. venular; vascular vs. lymphatic, etc.) due to anatomical 

location and their surrounding environmental conditions (Carmeliet, 2003). The various 

types of endothelial cells reside in areas that differ in local blood pressures and vascular 

wall compositions, which may contribute to the site-specificity of their phenotype. The 

heterogeneity of endothelial cells is demonstrated by their differential expression and 

responsiveness to angiogenic factors, such as VEGF or Ang-1, in different tissues. For 

example, Ang-1 stimulates angiogenesis in skin but has inhibitory effect in the heart 

(Carmeliet, 2003; Visconti, Richardson, & Sato, 2002). 

Endothelial cells are the inner, blood-contacting surface of the blood vessels. 

Because of the physiological environment, the endothelial cells experience three external 

mechanical forces: hydrodynamic pressure and shear stress caused by the blood flow, and 

also the tensile stress which is muscle contraction or vessel compliance (Shiu et al., 

2005). Mechanical stimulation alters endothelial cell activity including intracellular 

signaling, gene expression, and protein expression (Chien, 2007; Shiu et al., 2005). 

Endothelial cells may also invade tissues during tubulogenic processes where they may 

experience similar types of mechanical stimuli, but of different magnitudes and 

modalities.  

The processes of blood vessel formation, particularly capillaries are mostly 

initiated and mediated by endothelial cells. These processes involve proliferation and 

migration of endothelial cells that are regulated by a complex array of biochemical 

factors such as vascular endothelial growth factor-A (VEGF-A) (Hicklin & Ellis, 2005), 
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vascular endothelial growth factor-C (VEGF-C) (Hoeben et al., 2004), and fibroblast 

growth factor-2 (FGF-2) (Burgess & Maciag, 1989), as well as mechanical factors 

including shear stress (Goldman et al., 2007), solid matrix tension (Davis & Camarillo, 

1995), and pressure (Acevedo et al., 1993). 

 

1.3 Tubulogenesis 

Tubulogenesis refers to the general process of new vessel formation from pre-

existing vessels. There are three types of tubulogenesis carried out by endothelial cells: 

vasculogenesis, angiogenesis, and lymphangiogenesis.  

Vasculogenesis describes the de novo formation of primitive vasculature from 

endothelial cell precursors, particularly during embryogenesis (Shiu et al., 2005). 

Angiogenesis refers to the formation of blood vascular capillaries (Shiu et al., 2005), and 

lymphangiogenesis is the formation of lymphatic capillaries. Angiogenesis and 

lymphangiogenesis occur during post-developmental processes (e.g., wound healing, 

tissue remodeling, etc.). Both of these can be described as following a similar progression 

of endothelial cell mediated processes. Whether a particular tubulogenic activity is 

angiogenic or lymphangiogenic depends on the phenotype of the endothelial cells that 

mediate it. Microvascular endothelial cells generate the blood capillaries, while the 

lymphatic endothelial cells form lymphatic capillaries. 

There are two types of angiogenesis: intussusceptive angiogenesis and sprouting 

angiogenesis (Adair & Montani, 2010; Shiu et al., 2005). Intussusceptive angiogenesis is 

also called “splitting angiogenesis”. It is a process of one single vessel splitting into two 
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daughters and ultimately forming a branch (Adair & Montani, 2010; Shiu et al., 2005). 

Intussusceptive angiogenesis is primarily responsible in expanding the size of capillary 

networks and increasing their complexity (Burri, Hlushchuk, & Djonov, 2004). This 

process does not require intense proliferation of endothelial cells, but more focuses on the 

rearrangement of endothelial cells (Kilarski & Gerwins, 2009). The intussusceptive 

angiogenesis process is usually seen during wounding healing, tumor vascularization, and 

growth of endometrium during the female menstruation cycle (Kilarski & Gerwins, 

2009). But it is not known how split vessels move into avascular areas during healing of 

wounds (Kilarski & Gerwins, 2009).  

Sprouting angiogenesis depends on endothelial invasion of tissues involving 

matrix degradation, proliferation and migration (Adair & Montani, 2010). During 

 

Figure 1.4. Diagram of intussusceptive angiogenesis.  
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sprouting angiogenesis, the endothelial cells are recruited and activated by angiogenic 

growth factors, such as fibroblast growth factors (FGFs), vascular endothelial growth 

factors (VEGFs), or angiopoietins (Angs) (Ucuzian & Greisler, 2007). They start to 

proliferate and migrate, and they secrete proteolytic enzymes to degrade and remodel 

local extracellular matrix. Finally, the endothelial cells differentiate and sprout into linear 

cord-like structures. These cord-like structures elongate due to proliferation and lastly 

form lumens (Shiu et al., 2005). It is also believed that other cells such as pericytes, 

fibroblasts, and smooth muscle cells are recruited to support the later stages of sprouting 

angiogenesis by forming the basement membrane around the new vessel (Shiu et al., 

2005; Ucuzian & Greisler, 2007).  

Lymphangiogenesis is a process that describes the formation of new lymphatic 

capillaries from pre-existing lymphatics. The process of lymphangiogenesis is thought to 

be similar to angiogenesis. And it involves the activation, migration, sprouting, and 

proliferation of lymphatic endothelial cells (Ji, 2009; Stacker et al., 2014). The 

proliferation and migration of lymphatic endothelial cells depend on vascular endothelial 

growth factor receptors (VEGFR); specifically VEGFR-2 and VEGFR-3 (Ji, 2009; 

Stacker et al., 2014). They bind to vascular endothelial growth factor C (VEGF-C) or 

VEGF-D (Ji, 2009; Stacker et al., 2014). Fibroblast growth factor 2 (FGF-2), which has 

been shown to promote angiogenesis, has also been reported to have the ability to 

synergize with VEGF-C to stimulate lymphangiogenesis by endothelial cells (Stacker et 

al., 2014). 
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1.4 Tubulogenic Growth factors 

The formation of a microvascular network requires delicate coordination of not 

only different cells such as fibroblasts, smooth muscle cells, and endothelial cells, but 

also the expression of tubulogenic molecules, such as FGFs, VEGFs, ephrinB2, and Ang-

1 (Bouis et al., 2001; Michiels, 2003; Shiu et al., 2005; Stacker et al., 2014; Ucuzian & 

Greisler, 2007). Among these, the influences of the FGFs and VEGFs have received 

widespread attention. The involvements of tubulogenic molecules that fall within these 

two families of growth factors were a focus of the present study. 

Fibroblast Growth Factor (FGF) family 

FGF was identified as a polypeptide mitogen from bovine pituitary and later from 

brain (Slavin, 1995). To date, there are at least 20 FGFs and 4 fibroblast growth factor 

receptors (FGFRs) recognized (Cross & Claesson-Welsh, 2001; Sumpio et al., 2002). 

FGFs not only act on endothelial cells, but also some other cells such as fibroblasts and 

pericytes (Shiu et al., 2005). They are involved in tissue homeostasis, cell proliferation, 

migration, and differentiation (Boilly, Vercoutter-Edouart, Hondermarck, Nurcombe, & 

Le Bourhis, 2000; Cross & Claesson-Welsh, 2001).  

FGF-1, or acidic FGF (aFGF), is an anionic mitogen and mostly found in neural 

tissue. In comparison, FGF-2 is more widely present in many tissues such as brain, 

kidney, adrenal, and corpus luteum (Slavin, 1995). Importantly, FGF-2 is found in 

basement membrane of every blood vessel from all the organs (Slavin, 1995). FGF-2, 

also known as basic FGF (bFGF), is capable of promoting angiogenesis (Cross & 

Claesson-Welsh, 2001; Shiu et al., 2005; Thisse & Thisse, 2005), and lymphangiogenesis 
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(Cao et al., 2012). 

The four FGFRs are FGFR-1, FGFR-2, FGFR-3, and FGFR-4 (Boilly et al., 2000; 

R. Cao et al., 2012; Cross & Claesson-Welsh, 2001; Shiu et al., 2005). These FGFRs 

mediate the biological effects of FGFs (Boilly et al., 2000; Cross & Claesson-Welsh, 

2001). FGF-2 binds to FGFR-1 (Boilly et al., 2000; R. Cao et al., 2012; Cross & 

Claesson-Welsh, 2001), and studies have showed that blockade of FGFR-1inhibits FGF-2 

induced tubulogenesis (Boilly et al., 2000; R. Cao et al., 2012). It has been reported that 

FGFR-1 is involved in vessel formation and maintenance in the embryo (Lee, Schloss, & 

Swain, 2000). FGF-2 also binds to FGFR-2, which promotes some endothelial 

tubulogenic activities, such as cell migration, proliferation, and matrix protease 

production (Slavin, 1995).  

FGF-2 promotes many tubulogenesis processes involving endothelial 

proliferation, basement membrane degradation, and migration. FGF-2 promotes DNA 

synthesis and cellular division in many cell types, including endothelial cells, fibroblasts, 

and smooth muscle cells (Burgess & Maciag, 1989). Moreover, it has been reported that 

interstitial collagenases produced by endothelial cells may be induced by FGF-like 

molecules, and these collagenases play a role in the invasive process during angiogenesis 

(Mignatti, Tsuboi, Robbins, & Rifkin, 1989; Moscatelli, Presta, Joseph-Silverstein, & 

Rifkin, 1986). Finally, FGF-2 induces bovine capillary endothelial cell invasion into 

basement membrane (Mignatti et al., 1989). Endothelial migration depends expression of 

integrins, such as α2β1, α3β1, α5β1, α6β1, α6β4, and αvβ5 integrins, which are upregulated by 

FGF-2 stimulation. Moreover, FGF-2 treated endothelial cells exhibit high affinity for 

fibronectin, laminin, vitronectin, and type I collagen, proteins that make up the 
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extracellular matrices on which these cells migrate (Klein et al., 1993). This suggests that 

FGF-2 is sequestered in the extracellular matrices where they may be released due to 

tissue damage or remodeling. 

Interestingly, FGF-2 is also involved in lymphatic endothelial cell proliferation 

and migration. It has been reported that FGF-2 is involved in the expression of 

lymphangiogenic growth factor VEGF-C by cultured endothelial cells (Skobe & Detmar, 

2000). Furthermore, VEGF-C/VEGFR-3 signaling is essential for FGF-2 stimulated 

lymphangiogenic activities (R. Cao et al., 2012). In fact, FGF-2 induced 

lymphangiogenesis is dose-dependent. Specifically, FGF-2 stimulates lymphangiogenesis 

at low concentrations, but it promotes angiogenesis at high concentrations (Chang et al., 

2004). 

 

Vascular Endothelial Growth Factor (VEGF) family 

Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen 

(Neufeld, Cohen, Gengrinovitch, & Poltorak, 1999; Ucuzian & Greisler, 2007). There are 

six members in the VEGF family of growth factors: VEGF-A, VEGF-B, VEGF-C, 

VEGF-D, placental growth factor (PIGF), and the orf parapoxvirus VEGF (VEGF-E) 

(Cross & Claesson-Welsh, 2001). The biological effects of VEGFs are mediated by three 

tyrosine-kinase receptors: VEGFR-1, VEGFR-2, and VEGFR-3 (Cross & Claesson-

Welsh, 2001; Neufeld et al., 1999). The binding relationships between the VEGFs and 

VEGFRs are shown in table 1.1. The expression of VEGFR-1 and VEGFR-2 mostly 
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occurs in endothelial cells, while VEGFR-3 expression is restricted, for the most part, to 

lymphatic endothelial cells (Cross & Claesson-Welsh, 2001; Hoeben et al., 2004).  

VEGF-A plays a role in both physiological and pathological angiogenesis 

including angiogenesis in tumor and intraocular syndromes (Ferrara, 2001). It has been 

reported that VEGF-A is required for endothelial cell survival (Ferrara, 2001). VEGF-A 

also plays a role in regulation of microvascular permeability (Ferrara, 2001). 

Permeability has been proposed to be important in angiogenesis, because the leaked 

plasma proteins and the formation of a fibrin gel promotes the proliferation of endothelial 

cells (Ferrara, 2001). VEGF-A binds to VEGFR-1, also known as fms-like tyrosine 

kinase 1 (Flt-1), and VEGFR-2, also known as KDR, and the murine homologue (Flk-1) 

(Hicklin & Ellis, 2005). VEGFR-1 is critical in angiogenesis, but its impact on 

endothelial cells, upon ligand binding, is weak in comparison with that of VEGFR-2. 

VEGF-A/VEGFR-2 stimulates angiogenic processes including microvascular 

permeability, cell proliferation, migration, and invasion (Hicklin & Ellis, 2005). 

Two key molecules of interest to the present study are VEGFR-3, also known as 

fms-like tyrosine kinase 4 (Flt-4), and its ligand VEGF-C. VEGF-C is found mostly in 

heart, placenta, ovary, small intestine, and the thyroid gland (Hoeben et al., 2004) and is 

expressed by endothelial cells including bovine aortic endothelial cells (BAECs) (Shin et 

al., 2012). VEGF-C is mainly linked to lymphangiogenesis (Hoeben et al., 2004) 

although it is reported to have angiogenic effects. For example, VEGF-C stimulates 

endothelial angiogenic activities even after blocking VEGFR-2 signaling pathways 

(Persaud et al., 2004). By excluding the possibility of VEGF-A/VEGFR-2 and VEGF-

C/VEGFR-2 signaling, Persaud et al. still showed VEGF-C may enhance angiogenic 
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activity of endothelial cells which indicated a role for VEGF-C in angiogenesis (Persaud 

et al., 2004). VEGFR-3 is the primary receptor of VEGF-C (Tammela et al., 2008) 

although it also has affinity for VEGF-D.  

 

Table 1.1. VEGF family and their receptors. Summary of binding of VEGF family 
members to VEGFRs. 

 VEGFR-1 VEGFR-2 VEGFR-3 

VEGF-A ✔ ✔ ✗ 

VEGF-B ✔ ✗ ✗ 

VEGF-C ✗ ✔ ✔ 

VEGF-D ✗ ✔ ✔ 

VEGF-E ✗ ✔ ✗ 

PIGF ✔ ✗ ✗ 

 

For the most part, VEGFR-3 is expressed mainly in lymphatic endothelial cells 

with the ability to stimulate cell proliferation, cell migration, and apoptosis (Hoeben et 

al., 2004). But VEGFR-3 is also expressed by vascular endothelium such as BAECs, 

human umbilical vein endothelial cells (HUVECs), and human microvascular endothelial 

cells (HMVECs) (Kashima et al., 2012; Pepper, Mandriota, Jeltsch, Kumar, & Alitalo, 

1998; Persaud et al., 2004). In this study, we aimed to investigate the involvement of 
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VEGFR-3 in pressure-induced endothelial tubulogenesis, so we used an indolinone called 

MAZ51 to inhibit activity of VEGFR-3. It has been reported that MAZ51 has the ability 

to block the activity of VEGFR-3 at low concentrations (< 20 µM), and inhibits VEGFR-

2 at concentrations higher than 20 µM (Kirkin et al., 2004; Lin et al., 2008). 

 

1.5 Mechanotransduction 

Because endothelial cells in capillaries are adjacent to the blood flow, they are 

subjected to fluid shear stresses, tensile stresses due to pulsatile matrix deformation, and 

hydrodynamic pressures (Chien, 2007; Shin et al., 2002; Shiu et al., 2005). In interstitial 

tissues where sprouting angiogenesis occurs, the endothelial cells may also be exposed to 

the interstitial pressures and flows. It has been found that the tubulogenic activities of 

endothelial cells are subjected to regulation by the mechanical stimuli (Shiu et al., 2005). 

Fluid shear stress has been reported to be involved in angiogenic processes by regulating 

VEGF-A expression (Gan, Miocic, Doroudi, Selin-Sjogren, & Jern, 2000; Zheng, Seftor, 

Meininger, Hendrix, & Tomanek, 2001). Endothelial cells respond to shear stress through 

intracellular signaling, gene expression, and protein expressions (Chien, 2007). It has 

been reported that low shear stress caused by interstitial flow regulates endothelial 

morphology changes; for example, lymphatic endothelial cells were elongated, while the 

blood endothelial cells were branched and formed lumens (Ng, Helm, & Swartz, 2004). 

On the other hand, high shear stress leads to endothelial cell remodeling (Ng et al., 2004). 

Tensile stress caused by stretching regulates neovascular sprouting and elongation 

(Krishnan et al., 2008). It has also been reported that solid matrix tension plays a role in 
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endothelial cell migration (Davis & Camarillo, 1995). 

Compared to shear stress and stretch, pressure has only received limited attention 

in terms of its effects on endothelial tubulogenic activities such as elongated endothelial 

morphological changes (Acevedo et al., 1993; Schwartz, Bizios, Medow, & Gerritsen, 

1999; Sumpio, Widmann, Ricotta, Awolesi, & Watase, 1994), increased endothelial 

proliferation (Acevedo et al., 1993; Schwartz et al., 1999; Sumpio et al., 1994), and 

enhanced endothelial sprout formation (Shin et al., 2012). There is also evidence that 

pressure-induced endothelial cell activities involve increased release of cytoplasmic FGF-

2 (Acevedo et al., 1993) and expression of VEGF-C (Shin et al., 2002). This data 

implicates pressure is involvement in both angiogenesis and/or lymphangiogenesis 

processes.  

Notably, there are pathological conditions involving dysregulated tubulogenic 

activities that are also associated with high pressure. Severe pulmonary hypertension 

(>25 mmHg) is often associated with pulmonary arterial remodeling, where the intimal 

endothelial cells adopt a precapillary-like phenotype (Tuder & Voelkel, 2002; Yeager, 

Halley, Golpon, Voelkel, & Tuder, 2001). Patients who have cigarette smoking-induced 

emphysema and have a high pulmonary artery pressure (35 – 40 mmHg) are also found to 

have reduced number of peripheral lung blood vessels (Tuder & Voelkel, 2002). 

Furthermore, it has been found that the interstitial fluid pressure is over 50 mmHg in 

tumors, which is associated with tumor metastasis (Boucher & Jain, 1992). Notably, there 

are reports that tumors with interstitial hypertension (up to 50 mmHg) are associated with 

upregulated VEGF-C expression and are at more risk for metastasis (Y. Cao, 2008; 

Nathan et al., 2008). Presumably, the enhanced VEGF-C expression promotes lymphatic 
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formation in tumors, which facilitates the ability of metastatic cancer cells to get into the 

blood stream and spread to other organs with deadly consequences (R. Cao et al., 2012; 

Nathan et al., 2008). These in vivo data suggest a link between interstitial pressure levels 

and the state of endothelial tubulogenic activity. 

Recently, it was reported that pressure is, in fact, a magnitude-dependent stimulus 

for 1) cell proliferation that depends on VEGFR-3 and 2) sprout formation by endothelial 

cells grown on Cytodex microcarrier beads in three-dimensional collagen gels (Shin et 

al., 2012). The present study was carried out to further examine the potential influence of 

pressure on endothelial sprouting. 

 

1.6 Rationale  

There is a growing interest to investigate the effects of mechanical forces such as 

shear stress and tensile stress on endothelial tubulogenesis, but the effects of hydrostatic 

pressure are mostly neglected even though endothelial cells are exposed to different 

pressure levels during microvascular network remodeling under physiological and 

pathological conditions. The present study investigates a potential connection between 

interstitial pressure fluctuations and tubulogenic activities of endothelial cells. Along this 

line, the present study addresses the hypothesis that endothelial tubulogenic activities are 

pressure magnitude and exposure time dependent involving VEGFR-3 activity.  

Previously, our lab showed that endothelial tubulogenesis is pressure-magnitude 

dependent (Shin et al., 2012). This study was based on a microcarrier bead model, and 

studied endothelial tubulogenesis when exposed to 0, 20, or 40 mmHg. But it only 
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examined sprout formation after three days of exposure to only two pressure levels, 

which is insufficient to assess how pressure-sensitive endothelial sprouting is. The 

minimum exposure times and magnitudes required to have an effect on endothelial 

tubulogenic activity are unknown. Moreover, the study in question had used a three-

dimensional microbead model that may be a challenge to translate to tissue engineering 

applications because the beads are made of non-biodegradable material.  

The present investigation sought to adapt the use of endothelial spheroid cultures 

into our study. Endothelial spheroids are cellular aggregates without the need for a non-

physiologic substrate for supporting endothelial cell growth and viability. 

Simultaneously, we aimed to identify the operating pressures (0 – 40 mmHg) and 

exposure times for controlling endothelial sprouting rates, and also the contribution of 

VEGF-C/VEGFR-3 signaling pathway in the presence of pressure. For this purpose, we 

first exposed BAEC spheroids to 20 mmHg for 3 days and compared with their responses 

to those of endothelial spheroids cultured under atmospheric conditions. The goal of this 

first set of experiments was to test if endothelial cells in spheroid cultures exhibited 

similar sprout activity to cells in beads.  

We also aimed to identify the minimum exposure time required for endothelial 

spheroid cultures to display a change in their sprouting activity under 20 mmHg. Then we 

studied the sprouting responses of endothelial spheroids exposed the spheroids to 5 

mmHg and 40 mmHg for 2 and 3 days. For these experiments, the goal was to examine 

the effects of different pressure levels and exposure times on endothelial sprouting (i.e., 

pressure level dependence and time dependence). 
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Finally, we aimed to study the dependence of pressure-induced endothelial 

sprouting on VEGFR-3 signaling. We chose to conduct these studies with spheroids 

exposed to 20 mmHg and in the presence of VEGFR-3 blocker, MAZ51.The goal was to 

determine whether VEGFR-3 signaling plays a role in pressure-sensitive sprout formation 

in support of prior studies reporting evidence that exposure to 20 mmHg for 3 days 

stimulates endothelial proliferation involving autocrine VEGF-C/VEGFR-3 signaling. 

This has implications in determining if pressure may be used as a way to control the 

endothelial tubulogenic phenotype (angiogenesis vs. lymphangiogenesis). 

It is anticipated that the results from this study would provide insight into the 

physiological regulation of endothelial capillary formation during health and disease as 

well as the potential use of hydrostatic pressure as a tissue engineering control parameter 

for microvascularizing synthetic tissues. 
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2. Materials and Methods 

2.1 Cell culture 

Bovine aortic endothelial cells (BAECs; Invitrogen) were cultured in 25-cm2 cell 

culture flasks (T-25; BD Falcon) in basal Dulbecco’s Modified Eagle Medium (DMEM; 

Hyclone) supplemented with 10% Fetal Bovine Serum (FBS; Hyclone), 1% 

penicillin/streptomycin/L-glutamine solution (P/S/G; Hyclone). This DMEM formulation 

will heretofore be referred to as complete medium. For routine culture, the cells were 

maintained at 37 °C in the 5% carbon dioxide/95% air environment of a standard tissue 

culture incubator, and the complete medium was exchanged every 2 to 3 days. 

Upon reaching greater than 90% confluence, cell populations were split at ratios 

of either 1:2 or 1:3 v/v. Specifically, BAECs were rinsed with 5 mL of phosphate 

buffered saline (PBS; MP Biomedicals) for 1 or 2 minutes and then the PBS was 

aspirated. Cells were dissociated from substrates by incubation in 0.05% trypsin (Fisher 

Scientific) with periodic gentle agitation for 1 to 2 minutes. When all the cells were 

detached from the substrates, 3 mL of complete medium was added to the flask to 

deactivate the trypsin. The cell suspensions were then subcultured into 2 (1:2 split) or 3 

(1:3 split) fresh tissue culture flasks. In the present study, cells of up to 15 passages were 

used for experiments. 
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2.2 Cell Storage 

For long-term storage, cell populations that were greater than 90% confluent in T-

25 flasks were rinsed with 5 mL of PBS for 1 to 2 minutes and then lifted by incubation 

in 1 mL of 0.05% trypsin for 1 to 2 minutes in the incubator. After complete cell 

detachment from the flask surfaces, 3 mL of complete medium was added into the flask 

to deactivate the trypsin. The cell solution was transferred to a 15-mL centrifuge tube and 

pelleted at 200xg centrifugation for 5 minutes at 4 °C. The cells were resuspended in 1.5-

mL of sterile-filtered 10% dimethyl sulfoxide (DMSO; Sigma) in FBS. The 

cells/DMSO/FBS solution was transferred to 2-mL cryogenic vials (BD Falcon), placed 

at -80 °C for 1 day, and then transferred to liquid nitrogen for cryogenic storage. 

 

2.3 Thaw cells 

Frozen cell cultures were thawed quickly by partially submerging the 2-mL 

cryogenic vial in a 37 °C water bath with gentle agitation. When the cell solution was 

thawed (within 2 to 3 minutes), it was transferred to a new T-25 flask containing 3.5 mL 

of warm complete media and allowed to culture in a standard incubator for 1 day. After 

this initial day of culture, the supernatant containing non-adherent (non-viable) cells was 

removed and replaced with fresh complete media.  



www.manaraa.com

	
   26	
  

 

2.4 Methocel preparation 

Complete media containing high viscosity (4000 centipoise) methyl cellulose 

(ACROS Organics) was used for endothelial spheroid generation (see section 2.5). To 

prepare this methocel solution, 0.48 g methyl cellulose powder was added to a 100-mL 

glass bottle containing a stir bar and subsequently autoclaved. A 20-mL aliquot of basal 

DMEM preheated to 60 °C was added to the autoclaved methyl cellulose and subjected to 

agitation on a magnetic stir plate for 20 minutes at room temperature. At this time, an 

additional 20 mL of basal DMEM was added to the bottle and mixed at 4 °C for 1 to 2 

hours. The final solution containing 12 mg/mL methocel was then cleared by 

centrifugation (2500xg, 2 h, at room temperature), and the clear supernatant, representing 

the stock methocel solution to be used for spheroid generation, was stored at 4 °C. 

 

2.5 Spheroid generation 

To generate spheroids of defined sizes, i.e., cell numbers, we used a hanging 

droplet method (Figure 2.1) that was adapted from the literature (Korff & Augustin, 

1998). Confluent monolayers of BAECs were trypsinized/detached from T-25 flask 

surfaces and resuspended in complete DMEM. The densities of the cell suspensions were 

determined using a hemocytometer. BAECs at a density of 45 cells/µL were 

homogenously suspended in complete media containing 2.4 mg/mL methocel stock 

solution (see section 2.4). To make spheroids, a micropipette was used to deposit 15-µL 
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droplets of this cell mixture in a sterile petri dish. Each petri dish held up to 90 droplets. 

The petri dishes with the droplets were then flipped over 180o onto their sterile lids so 

that droplets were hanging upside down (Figure 2.1). The droplets were cultured in a 

standard cell culture incubator environment for 24 hours. Each droplet culture formed 

one spheroid. 

 

2.6 Three-dimensional spheroid sprouting assay 

2.6.1 Collagen solution formulation 

A gel solution containing 2.25 mg/mL Collagen type I was prepared according to 

the following formula: 80 parts 10X DMEM (Sigma), 10 parts 200 mM L-glutamine 

(Invitrogen), 549 parts Collagen type I (4.1 mg/mL; Corning), 13 parts 1 N sodium 

hydroxide solution (NaOH), 50 parts 0.53 N sodium bicarbonate solution (NaHCO3), 238 

parts methocel stock solution, and 60 parts DMEM. All these reagents were added in the 

order described and involved thorough mixing. Moreover, the steps carried out to make 

the gel solution were conducted on ice (i.e., at 4oC) using pre-cooled reagents and tubes. 

 

2.6.2 Harvest spheroids 

Endothelial spheroids were harvested from petri dishes and suspended at a density 

of 18 spheroids/mL of PBS. These spheroid suspensions were then transferred to 15-mL 

centrifuge tubes and pelleted at 200xg for 3 minutes. The supernatants were aspirated, 

and the spheroids were then resuspended in the gel solution. 
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Figure 2.1. Schematic of the process used to generate endothelial spheroids.  

Endothelial spheroids were prepared using BAECs suspended in 15-µL droplets 

containing 20% methocel stock solution at a cell density of 45 cells/µL. Droplets were 

plated in a petri dish and cultured upside down in the incubator for 24 hours.  
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2.6.3 Gel polymerization 

Three-dimensional (3-D) collagen gels with spheroids were generated following 

procedures adapted from a previous study (Shin et al., 2012). Briefly, aliquots (50 µL) of 

acellular collagen gel solution was deposited in individual wells of a 96-well tissue 

culture plate and allowed to polymerize for 20 minutes in a standard cell culture 

incubator. A second aliquot (50 µL) of gel solution, but this time, containing endothelial 

spheroids (450 spheroids/mL) was then deposited on top of the initial gel layer and 

allowed to polymerize for another 20 minutes. After polymerization, 50 µL of complete 

media were added to each well. In some gel cultures, the complete media was 

supplemented with either 0.5 µM MAZ51 (Millipore; VEGFR3-selective, tyrosine kinase 

inhibitor) in DMSO or 0.01% DMSO (Sigma; vehicle control).  

 

2.7 Pressure Exposure 

A custom pressure system (Figure 2.3) was used to expose endothelial cell 

preparations to stable hydrostatic pressures in a sealed chamber as previously reported 

(Shin et al., 2012). The pressure system consists of 8 major components: a compressed 

gas tank, a water column, a humidifier, a polycarbonate pressure chamber, a temperature-

controlled oven, pressure transducer, laptop with LabVIEW, and various interconnecting 

tubing.  
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Figure 2.2. Schematic depicting the generation of 3-D collagen gels containing 
endothelial spheroids. Figure adapted from (Shin et al., 2012). An acellular bottom 
layer collagen gel solution was allowed to polymerize first in the incubator for 20 
minutes. A second top layer containing the spheroids was then deposited on the bottom 
layer and allowed to polymerize in the incubator for another 20 minutes.  
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The pressure chamber and the humidifier were maintained at 37 °C in a 

temperature-controlled oven. The polycarbonate pressure chamber was designed to 

contain one cell culture plate. There are three ports on the pressure chamber: one 

connected to the compressed gas through a humidifier, one connected to the pressure 

transducer and pressure monitored by LabVIEW, and the other one connected to the 

resistance tubing. 

A compressed 5% CO2/95% air mixture in a gas cylinder was delivered to the 

pressure chamber to generate the hydrostatic pressure used to stimulate the cells. The 

flow of the compressed gas from the gas cylinder was split to two gas flows. One of them 

fed a down tube with its tip submerged down a hydrostatic water column. The other 

branch fed a humidifying chamber (to hydrate the gas) before injection into the sealed 

pressure chamber. The gas was allowed to pass through the chamber and exit to the 

atmosphere through resistance tubing. The resistance tubing was responsible for the 

development of a pressure in the pressure chamber.  

The pressure generated in the pressure chamber was controlled by adjusting the 

depth of the down-tubing submerged in the water column; i.e., the pressure in the 

pressure chamber equals to the hydrostatic pressure generated in the water column. A 

pressure regulator attached to the gas tank controlled the flow rate of the compressed gas 

that went into the system. In order to save gas, the flow rate was set to a minimum value 

to ensure the amount of gas entering the system was enough to support the desired 

pressure levels and cell viability. The resistance tubing was used to adjust the outflow 

rate. The pressure chamber was connected to the pressure transducer that interfaced to a 
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multi-channel analog to digital converter. The real-time and continuous pressure level in 

the chamber was monitored using LabVIEW software on a computer.  

For pressure experiments, 96-well tissue culture plates containing gel cultures 

were placed in the sealed chamber of our custom system, and the endothelial spheroids 

were exposed to 5, 20, and 40 mmHg sustained hydrostatic pressures for time periods of 

2 or 3 days. Controls were parallel spheroid cultures maintained under atmospheric 

pressure in a standard cell culture incubator. 

 

2.8 Fixation and staining 

Stock 8 (w/v)% para-formaldehyde (p-form) solution was prepared by dissolving 

0.8 g p-form (Acros Organics) in 10 mL deionized water (diH2O) with gentle agitation at 

85 oC until it turned clear. To aid this dissolving process, drops of 1 N NaOH were added 

intermittently during the stirring process until the p-form stock solution clarified. The 

stock 8% p-form solution was then filtered through a 0.2 µm filter, placed in tube 

wrapped in foil (to avoid light exposure), and stored in the refrigerator (4 °C). The 

fixative reagent used for gel assays was prepared by combining 2.5 mL of the stock 8% 

p-form solution with 0.625 mL of 8% glutaraldehyde (Electron Microscopy Sciences) 

and 5 mL of 0.2M phosphate buffer (Sorenson’s formulation; pH 7.4), and 1.875 mL of 

diH2O.  
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Figure 2.3. Custom hydrostatic pressure system. Figure adapted from (Shin et al., 
2012). A compressed gas tank was used to deliver pressurized 5% CO2 and 95% air 
environment to a downstream pressure chamber maintained at 37 °C in a temperature-
controlled oven. Cells in the pressure chamber were exposed to desired hydrostatic 
pressure levels using a hydrostatic water column setup connected between the gas tank 
and the pressure chamber. Controls were cells maintained at atmospheric pressure in a 
standard incubator.  
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To fix 3-D spheroid cultures, the media above the gels were gently removed using 

disposable (plastic) transfer pipettes and replaced with 100 µl of cold fixative reagent. 

The gels with fixative were then incubated in the dark at 4 °C for 2 hours. The gels were 

then washed with 1X PBS for 10 minutes at 4 °C and permeablized with 0.1% triton X-

100 in PBS for 30 minutes at 4 °C. After this step, the gels were washed with 1% BSA in 

PBS three times and immediately stained with 2 µg/mL 4′6-diamidino-2-phenylindole 

(DAPI) (MP Biomedicals) in 1% BSA in PBS for 30 minutes. Finally, the gels were 

washed six times with 1 % BSA in PBS in preparation for visualization with microscopy. 

 

2.9 Microscopy 

Spheroids were visualized using an IX-71 Olympus microscope under 

brightfield/relief contrast and 100X magnification.  DAPI (i.e., nuclear) staining was 

visualized using ultraviolet/fluorescence illumination. Brightfield and fluorescence 

images of spheroids were acquired using a Hammamatsu camera interfaced to the 

microscope using SimplePCI Imaging software on a PC computer.  Images of at least 6 

different spheroids were acquired for each experimental condition tested. Moreover, two 

different focal planes were captured for each spheroid to aid in recognition of sprout-like 

structures.  
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2.10 Morphometric Analyses 

The tubulogenic activity of 3-D endothelial spheroid cultures were assessed by 

quantifying their formation of sprout-like structures that extended from the end of the 

main body of the spheroid. Sprouts were identified as distinguishable linear structures 

with at least two nuclei and/or > 50 µm in projected length on the imaged focal plane of 

the spheroid. Sprouts were quantified by manual counts (number of sprouts/spheroid), 

cumulative projected length of sprouts/spheroid, and average projected length of 

sprouts/spheroid using ImageJ software. 

Figure 2.4 shows an example of a how a spheroid was quantified 

morphometrically. Panel i and panel ii depict identical spheroids that would be captured 

under bright field illumination for imaging morphology and fluorescence for visualizing 

DAPI-stained nuclei, respectively. By comparing those two fields, we identified sprouts 

to be tube-like structures that contained at least two nuclei and/or were at minimum 50 

µm in length (Panel iii). When branched structures were observed, the total length of all 

the branches for that sprout originating from the spheroid was measured as one sprout.  

 

2.11 Statistical Analysis 

Data were expressed as mean ± standard error of the mean (SEM). The measured 

tubulogenic activities of spheroid cultures were assessed using raw values. Comparison 

between means of experimental treatments were conducted using paired Student’s t-test 

with p < 0.05 denoting significant differences. To test the effects of MAZ51, we first 

normalized the tubulogenic activity of pressurized cells to that of controls and used this 
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parameter to determine the fold change caused by pressure stimulation. Significant fold 

changes were determined using one-sample t-tests that compared experimental values to 

a reference value of 1. 

 

 

 

Figure 2.4. Quantifying the Sprouting Activity of Endothelial Spheroids in 3-D 
Collagen Gels. Spheroids will be analyzed based on their brightfield (i) and UV 
fluorescence (ii) images. In this example, A, B (and B’), C, and D are identified to be 
sprout candidates that were quantified (iii). In this example provided, only structures A 
and B+B’ would be included in our analyses based on their nuclear content (>2) and 
length (>50 µm).  
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3. Results 

3.1 Distribution of tube-like structures with two nuclei 

We conducted an analysis to verify that sprouts of at least 50 µm in length 

satisfied the criterion that they contained at least 2 nuclei. Histogram analyses (Figure 

3.1) of the lengths of 298 tube-like structures that were measured from spheroids cultured 

under control (i.e., atmospheric) pressure conditions for 2 days revealed that at least 

96.3% are longer than 50 µm (Figure 3.1). On average, the length of sprout-like 

structures for controls was 109.89 µm ± 2.15 µm (mean ± SEM). Finally, sprout lengths 

among the population analyzed followed a normal distribution. 

 

Figure 3.1. Histogram of sprout lengths of all the spheroids cultured for 2 days that 
have at least two nuclei.  
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3.2 BAEC spheroids enhanced sprouting after exposure to 20 mmHg for 3 days 

BAEC spheroids suspended in collagen gels exhibited sprout formation when 

maintained under control (atmospheric) pressure conditions (Figure 3.2, Panel A) or 

exposed to 20 mmHg hydrostatic pressures (Figure 3.2, Panel B) for 3 days. 

The spheroids exposed to 20 mmHg for 3 days exhibited significant increases in 

cumulative length of sprouts/spheroid and average length of sprouts/spheroid relative to 

the controls (Figure 3.3). In contrast, in these experiments, we did not detect any changes 

in number of sprouts/spheroid in BAECs exposed to 20 mmHg (Figure 3.3). 

 

3.3 Endothelial sprouting exhibits a complex pressure magnitude dependence after 3 

days 

BAEC spheroids suspended in collagen gels exhibited sprout formation when 

maintained under control (atmospheric) pressure conditions or exposed to 5mmHg, 20 

mmHg, or 40 mmHg hydrostatic pressures (Figure 3.4) for 3 days. After exposure to 5 

mmHg for 3 days, BAECs exhibited significant decreases in cumulative length of 

sprouts/spheroid and average length of sprouts/spheroid relative to the controls (Figure 

3.5). There were no differences detected in number of sprouts/spheroid for BAECs either 

maintained under control conditions or exposed to 5 mmHg (Figure 3.5). The spheroids 

exposed to 20 mmHg for 3 days exhibited significant increases in number of 

sprouts/spheroid, cumulative length of sprouts/spheroid and average length of 

sprouts/spheroid relative to the controls (Figure 3.5). Finally, spheroids exposed to 40 

mmHg for 3 days exhibited significant decreases in the number of sprouts/spheroid 
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relative to controls (Figure 3.5). But cumulative length of sprouts/spheroid and average 

length of sprouts/spheroid did not show significant changes due to 40 mmHg-pressure 

exposure (Figure 3.5). 

 

3.4 Pressure-sensitive endothelial sprouting is duration dependent 

BAEC spheroids suspended in collagen gels exhibited sprout formation when 

maintained under control (atmospheric) pressure conditions or exposed to 5mmHg 

(Figure 3.6), or 20 mmHg (Figure 3.7), or 40 mmHg (Figure 3.8) hydrostatic pressures 

for 2 days. Spheroids exposed to 5 mmHg for 2 days exhibited significant decreases in 

number of sprouts/spheroid, cumulative length of sprouts/spheroid and average length of 

sprouts/spheroid relative to the controls (Figure 3.9). The spheroids exposed to 20 mmHg 

for 2 days did not show significant difference in any of the measures of sprout activity 

compared to controls (Figure 3.9). Finally, spheroids exposed to 40 mmHg for 2 days 

exhibited significant decreases in average length of sprouts/spheroid relative to the 

controls. But number of sprouts/spheroid and the cumulative length of sprouts/spheroid 

were unaffected by exposure to 40 mmHg for 2 days (Figure 3.9). 
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Figure 3.2. Representative images of BAEC spheroids exposed to 20 mmHg for 3 
days. Panel A: The brightfield and DAPI fluorescence images depict BAEC spheroids 
cultured maintained under control (atmospheric pressure) conditions for 3 days. Panel B: 
Brightfield and DAPI fluorescence images of BAEC spheroids exposed to 20 mmHg 
hydrostatic pressures for 3 days. DAPI fluorescence images displayed nuclear 
distributions within the sprouts and in the spheroid body. Magnification is 100X. 
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Figure 3.3. Endothelial spheroids exposed to 20 mmHg for 3 days appears to 
enhance endothelial sprouting. Bars are mean ± standard error; n = 3 independent 
experiments. *p < 0.05 compared to match controls using paired Student’s t-test. 
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Figure 3.4. Representative images of BAEC spheroids exposed to different pressure 
levels for 3 days. The brightfield and DAPI fluorescence images of BAEC spheroids 
suspended in collagen gels either maintained under control (atmospheric) pressure 
conditions or exposed to either 5 mmHg or 20 mmHg or 40 mmHg hydrostatic pressures 
for 3 days. DAPI fluorescence images displayed nuclear distributions within the sprouts 
and in the spheroid body. Magnification is 100X. 
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Figure 3.5. Endothelial spheroids exposed to 5, 20, and 40 mmHg for 3 days shows a 
complex effect on endothelial sprouting. Bars are mean ± standard error; n = 3, 4 
independent experiments. *p < 0.05 compared to match atmospheric pressure controls 
using paired Student’s t-test. 
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3.5 Pressure-induced BAEC spheroid sprouting is VEGFR-3 dependent 

Pressurized and unpressurized BAEC spheroids suspended in collagen gels 

exhibited sprouting activity in the absence (Figure 3.10) and presence of either 0.5 µM 

MAZ 51 (Figure 3.11) or 0.01% DMSO (Figure 3.12) for 3 days. While untreated BAEC 

spheroids exposed to 20 mmHg for 3 days exhibited significant increases in the number 

of sprouts/spheroid, cumulative length of sprouts/spheroid and average length of 

sprouts/spheroid relative to the controls (Figure 3.13), those exposed to similar pressures 

but in the presence of 0.5 µM MAZ51 only exhibited significant increases of average 

length of sprouts/spheroid, but not the number of sprouts/spheroid or cumulative length 

of sprouts/spheroid (Figure 3.13). Finally, spheroids exposed to 20 mmHg with vehicle 

control (i.e., 0.01% DMSO) for 3 days exhibited significant increases of cumulative 

length of sprouts/spheroid and average length of sprouts/spheroid, but not number of 

sprouts/spheroid relative to similar spheroid preparations that had been maintained under 

control pressures, (Figure 3.13). Together, these data implicated VEGFR-3 involvement 

in the sprouting responses of BAECs to 20-mmHg pressure exposure. 
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Figure 3.6. Representative images of BAEC spheroids exposed to 5 mmHg for 2 
days. Panel A: The brightfield images depict BAEC spheroids cultured under 
atmospheric conditions for 2 days. Panel B: The brightfield images depict BAEC 
spheroids exposed to 5 mmHg hydrostatic pressures for 2 days. Magnification is 100X 
magnification. 
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Figure 3.7. Representative images of BAEC spheroids exposed to 20 mmHg for 2 
days. Panel A: The brightfield images depict BAEC spheroids cultured under 
atmospheric conditions for 2 days. Panel B: The brightfield images depict BAEC 
spheroids exposed to 20 mmHg hydrostatic pressures for 2 days. Magnification is 100X 
magnification. 
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Figure 3.8. Representative images of BAEC spheroids exposed to 40 mmHg for 2 
days. Panel A: The brightfield images depict BAEC spheroids cultured under 
atmospheric conditions for 2 days. Panel B: The brightfield images depict BAEC 
spheroids exposed to 40 mmHg hydrostatic pressures for 2 days. Magnification is 100X 
magnification. 
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Figure 3.9. Endothelial spheroids exposed to 5, 20, and 40 mmHg for 2 days shows a 
complex effect on endothelial sprouting. Bars are mean ± standard error; n = 3 
independent experiments. *p < 0.05 compared to match controls using paired Student’s t-
test.  
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Figure 3.10. Representative images of BAEC spheroids exposed to pressure for 3 
days. The brightfield and fluorescence images depict BAEC spheroids suspended in 
collagen gels and either maintained under control (atmospheric) pressure conditions or 
exposed to 20 mmHg hydrostatic pressures for 3 days. DAPI fluorescence images 
displayed nuclear distributions within the sprouts and in the spheroid body. Magnification 
is 100X magnification. 
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Figure 3.11. Representative images of BAEC spheroids exposed to hydrostatic 
pressure in the presence of 0.5 µM MAZ 51 for 3 days. The brightfield and 
fluorescence images depict BAEC spheroids suspended in collagen gels and either 
maintained under control (atmospheric) pressure conditions or exposed to 20 mmHg 
hydrostatic pressures for 3 days. DAPI fluorescence images displayed nuclear 
distributions within the sprouts and in the spheroid body. Magnification is 100X 
magnification. 
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Figure 3.12. Representative images of BAEC spheroids exposed to hydrostatic 
pressure in the presence of DMSO cultured for 3 days. The brightfield and 
fluorescence images depict BAEC spheroids suspended in collagen gels and either 
maintained under control (atmospheric) pressure conditions or exposed to 20 mmHg 
hydrostatic pressures for 3 days. DAPI fluorescence images displayed nuclear 
distributions within the sprouts and in the spheroid body. Magnification is 100X 
magnification. 
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Figure 3.13. Expression of VEGFR-3 affects endothelial tubulogenic activities in the 
presence of pressure. Bars are mean ± standard error; n = 3. *p < 0.05 compared to 
match controls using paired Student’s t-test.  
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4. Discussion 

The present study tested the hypothesis that hydrostatic pressure stimulates 

endothelial sprout formation in a magnitude and exposure time dependent fashion 

involving VEGF-C/VEGFR-3 signaling. To address this hypothesis, the study was 

designed with two aims. For the first aim, we conducted 3-D collagen gel assays to 

characterize the pressure sensitivity of in vitro endothelial tubulogenesis by BAECs in the 

range of 0 (atmospheric) to 40 mmHg for periods of time up to 3 days. In the second aim, 

we used a small-molecule inhibitor, MAZ51, to explore the involvement of VEGFR-3 in 

pressure-induced tubulogenesis. VEGFR-3 and its high affinity ligand, VEGF-C, has 

been shown to be upregulated by hydrostatic pressure (Shin et al., 2012) and is 

considered to be involved in lymphangiogenesis (Hoeben et al., 2004). 

 

4.1 Physiological conditions of hydrostatic pressure 

In the circulatory system, endothelial cells are exposed to different pressures 

depending on their locations in the vessels and the physiological conditions of 

surrounding environment. During angiogenesis and lymphangiogenesis, endothelial cells 

may also experience interstitial pressures as they migrate into and invade the 

extravascular space. In this study we are interested in tubulogenic processes (i.e., 

angiogenesis or lymphangiogenesis) that occur in the microcirculation and interstitial 

tissues, including the lymphatics.  



www.manaraa.com

	
   54	
  

The three pressure levels tested in this study to assess the pressure sensitivity of 

endothelial tubulogenic activity were 5 mmHg, 20 mmHg, and 40 mmHg sustained 

hydrostatic pressures. Because tubulogenic processes start in microvasculature and 

develop into the surrounding tissues, the 5 mmHg and 20 mmHg pressure levels used in 

this study were chosen to fall within the physiological range of 0 to 30 mmHg typical of 

the microcirculation and of -8 mmHg to 20 mmHg reported for the interstitium (Guyton 

Arthur & Hall Jhon, 1996). The 40 mmHg hydrostatic pressure was chosen as a “high,” 

potentially pathological stimulus since it is higher than what would be expected under 

normal physiological conditions in the capillaries, venules, or tissues where endothelial 

cells carry out their tubulogenic activity. For example, under disease conditions such as 

in the hypertensive pulmonary artery, pressures can reach 35 mmHg to 40 mmHg (Tuder 

& Voelkel, 2002). Interstitial fluid pressures can rise above 50 mmHg in tumors 

(Boucher & Jain, 1992). 

There is previous evidence that pressures within this range affect tubulogenic 

activity. Briefly, Acevedo et al. showed that 1.5 – 15 cm H2O (approximately 1.1 mmHg 

– 11 mmHg) stimulates bovine pulmonary artery endothelial cell elongation, 

proliferation, and release of FGF-2 (Acevedo et al., 1993). Exposure to 20 mmHg has 

been reported to upregulate VEGF-C and VEGFR-3, and promote endothelial 

proliferation and sprout formation (Shin et al., 2012). Furthermore, it has been shown that 

FGF-2 is involved in the regulation of endothelial cells to pressure stimuli (Acevedo et 

al., 1993; Schwartz et al., 1999; Shin, Schwartz, Bizios, & Gerritsen, 2004; Shin et al., 

2012). Based on evidence like these, we rationalized the use of 5, 20, and 40 mmHg to 

examine the pressure and exposure time dependence of endothelial tubulogenic activity. 
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4.2 Cell selection 

BAECs are capable of forming tube-like structures in vitro (Dietrich & Lelkes, 

2006) and have been used in many investigations regarding the effects of pressure on 

endothelial tubulogenic processes such as proliferation and expression of angiogenic 

molecules (Ohashi, Sugaya, Sakamoto, & Sato, 2007). For example, BAEC morphology 

and proliferation rates are altered by static pressure elevations in a magnitude and 

duration dependent fashion (Sumpio et al., 1994). Moreover, BAECs express both 

VEGF-C (Kumar, Harris-Hooker, & Sanford, 2008) and VEGFR-3 (Persaud et al., 2004). 

Thus, it was appropriate for us to examine the role of VEGF-C/VEGFR-3 signaling in 

pressure-induced tubulogenesis. In the present study, we observed BAEC spheroids to be 

capable of forming tube-like structures (see section 3.2). 

 

4.3 3-D gel assay 

The use of 3-D models to assess endothelial tubulogenic activity was selected to 

more accurately mimic the in vivo environment for endothelial cells. It not only allowed 

us to study endothelial sprout formation as a whole but also provided some insight 

regarding the relative contributions of pressure-sensitive proliferation and migration, two 

key processes that play key roles in tubulogenesis.  

Hydrogels, similar to those used in the present study, are made of complex cross-

linked polymer chains or protein molecules. They are typically employed as biological 
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matrices to mimic ECM because of their high water contents, transport of gases, 

nutrients, wastes, and soluble factors as well as their ability to support the growth of cells 

in a 3-D geometry (Tibbitt & Anseth, 2009).  

Three common hydrogels for 3-D cell cultures are type I collagen gel, Matrigel, 

and fibrin gel. Native ECM and basement membrane is typically comprised of type I 

collagen, type IV collagen, and laminin (Carmeliet, 2003; Wozniak & Keely, 2005). 

Type I collagen is major component of connective tissue. Type IV collagen, and laminin 

are components of basement membrane.  

In this study, we examined the pressure mechanobiology of endothelial 

tubulogenesis in hydrogel constructs made up of type I collagen. We chose Type I 

collagen because it is the minimal collagen-based gel component needed to support 

endothelial growth in 3-D collagenous matrices.  Matrigel was avoided since it contains 

other constituents which may vary widely from batch to batch. Fibrin gel contains 

fibrinogen and thrombin which play an important role in blood clotting (Janmey, Winer, 

& Weisel, 2009). So fibrin gels are usually used to model clotted tissues during wound 

healing processes.  

 

4.4 Parameters we studied  

For our analyses, we defined a sprout as a linear structure with at least two nuclei. 

Furthermore, the sprout had to be greater than 50 µm in path length, which was used as a 

threshold length by others (Dietrich & Lelkes, 2006). To verify that sprouts having a 

minimum of two nuclei were at least 50 µm in length, we analyzed 298 tube-like 
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structures formed by our BAECs maintained under control conditions cultured for 2 days. 

We found that 96.3% of the sprouts having 2 nuclei were longer than 50 µm in length. 

This provided the confirmation we needed to proceed with our pressure studies.   

In the present study, we used three parameters to assess the tubulogenic activity of 

endothelial cells: number of sprouts/spheroid, cumulative lengths of sprouts/spheroid, 

and the average length of sprouts/spheroid. The number of sprouts/spheroid is the 

average number of sprouts extending from each spheroid.  The cumulative length of 

sprouts/spheroid is the average of the sum of the lengths of all sprouts from one spheroid. 

Finally, the average length of sprouts/spheroid was the mean length of all sprouts 

extending from each individual spheroid. 

Number of sprouts is measured to generally represent the effect of pressure on 

initiation of endothelial sprout formation which likely involves invasion and migration of 

endothelial cells. Cumulative length of sprouts/spheroid and average length of 

sprouts/spheroid gives us two perspectives of the effect of pressure on endothelial sprout 

outgrowth. The cumulative length of sprouts/spheroid is anticipated to occur due to 

changes in sprout lengths without direct consideration of number of sprouts. This 

provided us with an initial assessment of the overall extent of endothelial sprout 

outgrowth which may be due more so to cell proliferation. We can get a sense of whether 

the change in cumulative length of sprouts/spheroid is due to the change in number of 

sprouts (cell invasiveness) or sprout elongation (cell proliferation) using the average 

length of sprouts/spheroid.  
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Based on our analyses, we believe that cumulative length of sprouts/spheroid was 

the most reliable assessment of the tubulogenic activity for endothelial spheroid assay 

used in the present study. There was a high degree of variability in the numbers of 

sprouts and branches formed from one endothelial spheroid. It was also challenging at 

times to identify individual sprouts due to the difficulty in determining the edges of 

spheroid body from which sprouts extended. As a result, the values for number of sprouts 

and average length of sprouts/spheroid (which also requires identification of individual 

sprouts) were associated with a large variability.  On the other hand, cumulative length of 

sprouts/spheroid only relied on measurements that were summed without dependence on 

identifying individual sprouts, which we defined to originate from the spheroid body. 

Notably, this is in contrary to the bead assays conducted by Shin et al. (2012). This could 

be explained by the fact that sprouts extending from the solid, inert surfaces of the 

microbeads were easier to distinguish. 

 

4.5 Evidence that shows the tubulogenesis is associated with the magnitude and 

duration of pressure  

There is evidence in the literature that tubulogenic activities are modulated by 

exposure to pressure. Exposure of human umbilical vein endothelial cell (HUVEC) to as 

low as 3 mmHg is stimulatory for cell proliferation compared to cells cultured under 

control pressure conditions (Schwartz et al., 1999). Bovine pulmonary artery endothelial 

cells elongate as well as display increased proliferation rates in response to hydrostatic 

pressures of 1.5 – 15 cm H2O for up to 7 days (Acevedo et al., 1993). Acevedo et al. also 
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showed release of FGF-2 from endothelial cells exposed to pressure. BAECs also 

elongate and proliferate at higher rates under high pressures (40, 80, and 120 mmHg) 

depending on exposure times (9, 7, and 3 days respectively) (Sumpio et al., 1994). A 

previous study also showed an upregulation of VEGF-C and VEGFR-3 when BAECs 

were exposed to 20 mmHg but not 40 mmHg (Shin et al., 2012). Studies such as these 

supported the likelihood that hydrostatic pressure is stimulatory for tube formation. 

In fact, our laboratory previously showed that sprout formation is stimulated by 

exposure to 20 mmHg but not to 40 mmHg for 3 days based on a microcarrier bead 

model of tubulogenesis (Shin et al., 2012). However, the microcarrier bead is non-

biodegradable which is questionable to be used in tissue engineering applications. Thus, 

instead of the microcarrier bead model, we applied endothelial spheroid model in this 

study to firstly verify if the result is consistent with what was reported from the bead 

model.  

In present study, we explored the hydrostatic pressure magnitude and duration 

sensitivity of endothelial tubulogenesis by using an endothelial spheroid model. First, we 

compared the number of sprouts, cumulative length of sprouts/spheroid, and average 

length of sprouts/spheroid from the spheroids maintained under control conditions and or 

exposed to 20 mmHg for 3 days. We found significantly increased cumulative length of 

sprouts/spheroid and average length of sprouts/spheroid but not the number of sprouts for 

the spheroids exposed to 20 mmHg for 3 days in comparison with controls. However, in a 

previous study, the investigators did not report any changes in average sprout lengths but 

they did report an increase in the number of sprouts for BAECs on microcarrier beads 

exposed to 20 mmHg in collagen gels (Shin et al., 2012). The different results between 
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the present study and those of Shin et al. (2012) may have resulted from the differences 

between the two tubulogenesis models used. It is likely that difficulty in distinguishing 

distinct sprouts originating from spheroid bodies from those that branched from other 

sprouts may have contributed to a high variability in the measured parameter.  

Notably, we consistently showed that exposure of 20 mmHg for 3 days promoted 

BAEC sprouting as indexed by changes in cumulative length of sprouts/spheroid 

originating from spheroids. It should be noted that, in our initial experiments (see Section 

3.2), we observed this increase in cumulative lengths but not an increase in number of 

sprouts. However, in our second set of experiments (see Section 3.3), while we did 

observe an increase in cumulative length of sprouts/spheroid for BAEC spheroids 

exposed to 20 mmHg, we also observed a significant increase in number of sprouts. The 

discrepancy in the number of sprouts/spheroid observed for these two sets of experiments 

supported the likelihood of a high variability in the number of sprouts index used for 

quantifying BAEC sprouting activity under pressure originating from difficulty 

identifying individual sprouts based on our definition of what a sprout is.  Moreover, the 

data in the present study confirmed that the cumulative length of sprouts/spheroid 

measure was a more reliable measure. 

The present study also provided evidence that BAEC sprout formation is pressure 

magnitude dependent in line with prior studies reporting magnitude-dependent effects of 

pressure on cell proliferation for HUVECs, bovine pulmonary artery endothelial cells, 

and BAECs. Notably, we found that exposure to 5 mmHg induced an inhibitory effect on 

BAEC sprout formation while, based on our cumulative length measure, the 40-mmHg 

pressure had no effect.   
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Although it has been shown that low pressures (1.5 – 15 cm H2O) promote bovine 

pulmonary artery endothelial cell proliferation and elongation (Acevedo et al., 1993), we 

still observed decreased cumulative length of sprouts/spheroid for BAEC spheroids 

exposed to 5 mmHg for 3 days. This suggests that low pressure may limit other steps in 

endothelial tubulogenesis process such as invasion, or migration. More work, however, is 

needed to explain this discrepancy. 

Exposure to 40 mmHg for 3 days had no effect on lengths but it did appear to 

have an inhibitory effect on number of sprouts/spheroid. BAECs showed increased 

proliferation when exposed to 40 mmHg only after 9 days (Sumpio et al., 1994). Our 

laboratory previously showed that exposure to 40 mmHg for 3 days had no effect on 

BAEC proliferation under the conditions similar to those tested in the present study (Shin 

et al., 2012). These results indicate that a 3-day exposure to 40 mmHg may not have been 

enough to induce a change in BAEC sprout formation considering that cumulative length 

of sprouts/spheroid result endothelial cell proliferation during sprout elongation (Shin et 

al., 2012). Notably, we did detect a significant decrease in number of sprouts/spheroid, 

which is different from previous observations (Shin et al., 2012), but again this difference 

may have been due to the different models or the variability associated with this 

parameter assessing sprouting activity of BAEC spheroids. 

Finally, we examined the dependence of pressure-sensitive BAEC sprouting on 

exposure time. We found that 5 mmHg showed an inhibitory effect on number of 

sprouts/spheroid and cumulative length of sprouts/spheroid suggesting that the inhibitory 

effects of the 5-mmHg stimulus occurs rapidly within 2 days of the onset of pressure 

stimulation. In the case of the 20-mmHg stimulus, enhanced BAEC sprout formation 
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required at least 3 days of pressure exposure. Notably, BAEC spheroids exposed to 40 

mmHg showed only a decrease in average length of sprouts/spheroid but not number of 

sprouts/spheroid and cumulative length of sprouts/spheroid. Taken together, these data 

indicates that 2-day exposure times are enough for endothelial spheroids to show reduced 

sprouting activity (e.g., when exposed to 5 mmHg) while 3-day exposure times are 

required for BAEC spheroids to display enhanced sprout formation (e.g., in response to 

20 mmHg). Thus, BAEC sprouting is pressure exposure duration dependent. Moreover, 

the regulation of endothelial tubulogenic activity is complex that may involve different 

mechanisms depending on the applied magnitude of the stimulus. 

 

4.6 Tubulogenic activities are VEGFR-3 dependent 

In addition to characterizing the pressure dependence of endothelial sprouting 

activity, the present study also aimed to determine if VEGFR-3 is involved in pressure-

induced tubulogenic activities. BAECs express both VEGF-C (Kumar et al., 2008) and its 

receptor VEGFR-3 (Persaud et al., 2004). Although the VEGFR-3 is widely thought to be 

involved in lymphangiogenesis and associated with lymphatic endothelial cells, VEGFR-

3 has been reported to be expressed by blood vessel endothelial cells including BAEC 

(Pepper et al., 1998; Persaud et al., 2004). So we cannot exclude the possibility that the 

pressure-induced tubulogenesis is angiogenic even if VEGFR-3 is involved.   

Previous studies showed pressure-sensitive expression of VEGF-C (Shin et al., 

2002; Shin et al., 2012). It has also been reported that expression of VEGF-C and the 

HUVEC proliferation is increased for HUVEC exposed to 60/20 mmHg cyclic pressure. 
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Recently, it was reported that VEGF-C and VEGFR-3 expression is upregulated by 

exposure of BAEC to 20 mmHg, but not 40 mmHg (Shin et al., 2012). Considering that 

VEGFR-3 was also reported to play a role in the upregulation of BAEC proliferation by 

exposure to 20 mmHg, it is conceivable that VEGFR-3 is also involved in the enhanced 

sprouting activity of BAECs exposed to 20 mmHg. Using the small molecule inhibitor, 

MAZ51, which blocks the kinase activity of this receptor (Kirkin et al., 2004), the results 

of the present study supported a role for VEGR-3 in pressure-sensitive tubulogenic 

activity of BAECs. Further evidence is needed to fully reveal how VEGFR-3 participates 

in this process.  

 

4.7 Summary of Findings  

The results of the present study provided evidence for the following:  

• BAEC spheroids require at least 3 days of exposure to 20 mmHg to exhibit 

enhanced sprouting activity in the form of increased sprout length.  

• Exposure to 5 mmHg appears to attenuate endothelial sprouting activity.  

• BAEC spheroids exposed to 40 mmHg for 3 days also inhibits sprouting 

activity by reducing sprout numbers, but not lengths. 

• Pressure-sensitive VEGFR-3 activity is required for the ability of 20-mmHg 

pressure stimulus to enhance BAEC sprouting. 
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Based on these findings and those from a previous study (Shin et al., 2012), it is 

apparent that VEGFR-3 dependent BAEC sprouting appears to exhibit a complex 

pressure dependence. These outcomes not only provide new mechanistic insight related 

to a role for pressure-sensitive tubulogenic regulation in diseases associated with 

interstitial hypertension, but the also point to a level of control that may be useful for 

tissue engineering approaches to microvascularize synthetic constructs.   
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